Publications

  1. Comparing molecules and solids across structural and alchemical space
    Sandip De, Albert P. Bartók, Gábor Csányi and Michele Ceriotti
    Phys. Chem. Chem. Phys. 18, 13754 (2016)
  2. Determining the pressure-temperature phase diagrams of materials
    Rober J. N. Baldock, Livia B. Pártay, Albert P. Bartók, Mike C. Payne, and Gábor Csányi
    Phys. Rev. B 93, 174108 (2016)
  3. Molecular modeling of water: From pairwise to many-body potential energy surfaces
    Andres Cisneros, Kjartan Thor Wikfeldt, Lars Ojamäe, Jibao Lu, Yao Xu, Albert P. Bartók; Gábor Csányi, Valeria Molinero, Francesco Paesani
    Chem. Rev. 116, 7501 (2016)
  4. Gaussian Approximation Potentials: A Brief Tutorial Introduction
    Albert P. Bartók and Gábor Csányi
    Int. J. Quant. Chem. 115, 1051 (2015)
  5. Nested sampling for materials: The case of hard spheres
    L. B. Pártay, A. P. Bartók, and G. Csányi
    Phys. Rev. E 89, 022302 (2014)
  6. Communication: Energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water
    D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan
    J. Chem. Phys. 138, 221102 (2013)
  7. Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water
    A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi
    Phys. Rev. B 88, 054104 (2013)
  8. First-principles energetics of water clusters and ice: A many-body analysis
    M. J. Gillan, D. Alfè, A. P. Bartók, and G. Csányi
    J. Chem. Phys. 139, 244504 (2013)
  9. On representing chemical environments
    A. P. Bartók, R. Kondor, and G. Csányi
    Phys. Rev. B 87, 184115 (2013)
  10. Efficient Sampling of Atomic Configurational Spaces
    L B. Pártay, A. P. Bartók, and G. Csányi
    J. Phys. Chem. B 114, 10502 (2010)
  11. Gaussian Approximation Potentials: the accuracy of quantum mechanics, without the electrons
    A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi
    Phys. Rev. Lett. 104, 136403 (2010)
  12. Aromaticity on the fly: cyclic transition state stabilization at finite temperature
    A. Stirling, T. Rozgonyi, and A. P. Bartók
    J. Phys. Chem. A 114, 1207 (2010)
  13. Gaussian Approximation Potential (patent application)
    A. P. Bartók, G. Csányi, and R. Kondor
  14. Disorder in ice polymorphs: A Monte Carlo simulation study
    A. Bartók and A. Baranyai
    J. Non-Cryst. Solids 353 (28), 2698-2707 (2007)
  15. Structure of coexisting liquid phases of supercooled water: Analogy with ice polymorphs
    P. Jedlovszky, L. B. Pártay, A. P. Bartók, G. Garberoglio, and R. Vallauri
    J. Chem. Phys. 126, 241103 (2007)
  16. Classical interaction model for the water molecule
    A. Baranyai and A. Bartók
    J. Chem. Phys. 126, 184508 (2007)
  17. Testing the adequacy of simple water models at the opposite ends of the phase diagram
    A. Baranyai, A. Bartók, and A. A. Chialvo
    J. Mol. Liq. 134, 94 (2007)
  18. On the re-engineered TIP4P water models for the prediction of vapor-liquid equilibrium
    A. A. Chialvo, A. Bartók, and A. Baranyai
    J. Mol. Liq. 129, 120 (2006)
  19. Limitations of the rigid planar nonpolarizable models of water
    A. Baranyai, A. Bartók, and A. A. Chialvo
    J. Chem. Phys. 124, 074507 (2006)
  20. Computer simulation of the 13 crystalline phases of ice
    A. Baranyai, A. Bartók, and A. A. Chialvo
    J. Chem. Phys. 123, 054502 (2005)